Methods of Proof

Lecture 3: Sep 9
Now we have learnt the basics in logic.

We are going to apply the logical rules in proving mathematical theorems.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases
Basic Definitions

An integer \(n \) is an **even** number if there exists an integer \(k \) such that \(n = 2k \).

An integer \(n \) is an **odd** number if there exists an integer \(k \) such that \(n = 2k + 1 \).
Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

The sum of two even numbers is even.

Proof
$x = 2m, \ y = 2n$
$x+y = 2m+2n$
$= 2(m+n)$
Direct Proofs

The product of two odd numbers is odd.

Proof
\[x = 2m+1, \ y = 2n+1 \]
\[xy = (2m+1)(2n+1) \]
\[= 4mn + 2m + 2n + 1 \]
\[= 2(2mn+m+n) + 1. \]

If \(m \) and \(n \) are perfect square, then \(m+n+2\sqrt{mn} \) is a perfect square.

Proof
\[m = a^2 \text{ and } n = b^2 \text{ for some integers } a \text{ and } b \]
Then \[m + n + 2\sqrt{mn} = a^2 + b^2 + 2ab \]
\[= (a + b)^2 \]
So \(m + n + 2\sqrt{mn} \) is a perfect square.
This Lecture

• Direct proof
• Contrapositive
• Proof by contradiction
• Proof by cases
Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

Claim: If r is irrational, then √r is irrational.

How to begin with?

What if I prove “If √r is rational, then r is rational”, is it equivalent?

Yes, this is equivalent, because it is the *contrapositive* of the statement, so proving “if P, then Q” is equivalent to proving “if not Q, then not P”.

Yes, this is equivalent, because it is the *contrapositive* of the statement, so proving “if P, then Q” is equivalent to proving “if not Q, then not P”.
Rational Number

R is rational ⇔ there are integers a and b such that

\[
\frac{a}{b} \quad \text{and } b \neq 0.
\]

Is 0.281 a rational number? Yes, 281/1000

Is 0 a rational number? Yes, 0/1

If m and n are non-zero integers, is \((m+n)/mn\) a rational number? Yes

Is the sum of two rational numbers a rational number? Yes, \(a/b+c/d=(ad+bc)/bd\)

Is \(x=0.12121212\ldots\) a rational number? Note that \(100x-x=12\), and so \(x=12/99\).
Proving the Contrapositive

Goal: If P, then Q. (P implies Q)

Method 2: Prove the contrapositive, i.e. prove “not Q implies not P”.

Claim: If r is irrational, then √r is irrational.

Proof:

We shall prove the contrapositive - "if √r is rational, then r is rational."

Since √r is rational, √r = a/b for some integers a,b.

So r = a²/b². Since a,b are integers, a²,b² are integers.

Therefore, r is rational. Q.E.D.

(Q.E.D.) “which was to be demonstrated”, or “quite easily done”. 😊
Proving an “if and only if”

Goal: Prove that two statements P and Q are “logically equivalent”, that is, one holds if and only if the other holds.

Example: For an integer n, n is even if and only if \(n^2 \) is even.

Method 1a: Prove P implies Q and Q implies P.

Method 1b: Prove P implies Q and not P implies not Q.

Method 2: Construct a chain of if and only if statement.
For an integer n, n is even if and only if n^2 is even.

Method 1a: Prove P implies Q and Q implies P.

Statement: If n is even, then n^2 is even

Proof: $n = 2k$

$n^2 = 4k^2$

Statement: If n^2 is even, then n is even

Proof: $n^2 = 2k$

$n = \sqrt{2k}$

??
Proof the Contrapositive

For an integer \(n \), \(n \) is even if and only if \(n^2 \) is even.

Method 1b: Prove \(P \) implies \(Q \) and not \(P \) implies not \(Q \).

Statement: If \(n^2 \) is even, then \(n \) is even

Contrapositive: If \(n \) is odd, then \(n^2 \) is odd.

Proof (the contrapositive):

Since \(n \) is an odd number, \(n = 2k+1 \) for some integer \(k \).

So \(n^2 = (2k+1)^2 \)

\[= (2k)^2 + 2(2k) + 1 = 2(2k^2 + 2k) + 1 \]

So \(n^2 \) is an odd number.
This Lecture

• Direct proof

• Contrapositive

• Proof by contradiction

• Proof by cases
Proof by Contradiction

\[\overline{P} \rightarrow F \]
\[P \]

To prove \(P \), you prove that not \(P \) would lead to ridiculous result, and so \(P \) must be true.
Proof by Contradiction

\textbf{Theorem:} $\sqrt{2}$ is irrational.

Proof (by contradiction):

- Suppose $\sqrt{2}$ was rational.
- Choose m, n integers without common prime factors (always possible) such that $\sqrt{2} = \frac{m}{n}$
- Show that m and n are both even, thus having a common factor 2, a contradiction!
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Proof (by contradiction): Want to prove both \(m \) and \(n \) are even.

\[
\sqrt{2} = \frac{m}{n}
\]

\[
\sqrt{2}n = m
\]

\[
2n^2 = m^2
\]

so \(m \) is even.

so can assume \(m = 2l \)

\[
m^2 = 4l^2
\]

\[
2n^2 = 4l^2
\]

\[
n^2 = 2l^2
\]

so \(n \) is even.

Recall that \(m \) is even if and only if \(m^2 \) is even.
Infinitude of the Primes

Theorem. There are infinitely many prime numbers.

Proof (by contradiction):

Assume there are only finitely many primes.

Let p_1, p_2, \ldots, p_N be all the primes.

1. We will construct a number N so that N is not divisible by any p_i.

 By our assumption, it means that N is not divisible by any prime number.

2. On the other hand, we show that any number must be divided by *some* prime.

 It leads to a contradiction, and therefore the assumption must be false.

So there must be infinitely many primes.
Divisibility by a Prime

Theorem. Any integer \(n > 1 \) is divisible by a prime number.

- Let \(n \) be an integer.
- If \(n \) is a prime number, then we are done.
- Otherwise, \(n = ab \), both are smaller than \(n \).
- If \(a \) or \(b \) is a prime number, then we are done.
- Otherwise, \(a = cd \), both are smaller than \(a \).
- If \(c \) or \(d \) is a prime number, then we are done.
- Otherwise, repeat this argument, since the numbers are getting smaller and smaller, this will eventually stop and we have found a prime factor of \(n \).

Idea of induction.
Theorem. There are infinitely many prime numbers.

Proof (by contradiction):

Let p_1, p_2, \ldots, p_N be all the primes.

Consider $p_1p_2\ldots p_N + 1$.

Claim: if p divides a, then p does not divide $a+1$.

Proof (by contradiction):

$a = cp$ for some integer c
$a+1 = dp$ for some integer d

$\Rightarrow 1 = (d-c)p$, contradiction because $p \geq 2$.

So, by the claim, none of p_1, p_2, \ldots, p_N can divide $p_1p_2\ldots p_N + 1$, a contradiction.
This Lecture

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases
Proof by Cases

\(p \lor q \)
\(p \rightarrow r \)
\(q \rightarrow r \)
\(\therefore r \)

e.g. want to prove a nonzero number always has a positive square.

x is positive or x is negative

if x is positive, then \(x^2 > 0 \).

if x is negative, then \(x^2 > 0 \).

\(\therefore x^2 > 0. \)
The Square of an Odd Integer

\[\forall \text{ odd } n, \exists m, n^2 = 8m + 1? \]

Idea 0: find counterexample.

\[3^2 = 9 = 8+1, \quad 5^2 = 25 = 3\times8+1 \quad \ldots \quad 131^2 = 17161 = 2145\times8 + 1, \ldots \ldots \]

Idea 1: prove that \(n^2 - 1 \) is divisible by 8.

\[n^2 - 1 = (n-1)(n+1) = ??... \]

Idea 2: consider \((2k+1)^2\)

\[(2k+1)^2 = 4k^2+4k+1 = 4(k^2+k)+1 \]

If \(k \) is even, then both \(k^2 \) and \(k \) are even, and so we are done.

If \(k \) is odd, then both \(k^2 \) and \(k \) are odd, and so \(k^2+k \) even, also done.
Rational vs Irrational

Question: If a and b are irrational, can a^b be rational??

We (only) know that $\sqrt{2}$ is irrational, what about $\sqrt{2}^{\sqrt{2}}$?

Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational

Then we are done, $a=\sqrt{2}$, $b=\sqrt{2}$.

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational

Then $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$, a rational number

So $a=\sqrt{2}^{\sqrt{2}}$, $b=\sqrt{2}$ will do.

So in either case there are a, b irrational and a^b be rational.

We don’t (need to) know which case is true!
Summary

We have learnt different techniques to prove mathematical statements.

- Direct proof
- Contrapositive
- Proof by contradiction
- Proof by cases

Next time we will focus on a very important technique, proof by induction.