Monochromatic and Bichromatic Reverse Nearest Neighbor Queries on Land Surfaces

Da Yan, Zhou Zhao and Wilfred Ng
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
{yanda, zhaozhou, wilfred}@cse.ust.hk

ABSTRACT
Finding reverse nearest neighbors (RNNs) is an important operation in spatial databases. The problem of evaluating RNN queries has already received considerable attention due to its importance in many real-world applications, such as resource allocation and disaster response. While RNN query processing has been extensively studied in Euclidean space, no work ever studies this problem on land surfaces. However, practical applications of RNN queries involve terrain surfaces that constrain object movements, which rendering the existing algorithms inapplicable.

In this paper, we investigate the evaluation of two types of RNN queries on land surfaces: monochromatic RNN (MRNN) queries and bichromatic RNN (BRNN) queries. On a land surface, the distance between two points is calculated as the length of the shortest path along the surface. However, the computational cost of the state-of-the-art shortest path algorithm on a land surface is quadratic to the size of the surface model, which is usually quite huge. As a result, surface RNN query processing is a challenging problem.

Leveraging some newly-discovered properties of Voronoi cell approximation structures, we make use of standard index structures such as an R-tree to design efficient algorithms that accelerate the evaluation of MRNN and BRNN queries on land surfaces. Our proposed algorithms are able to localize query evaluation by accessing just a small fraction of the surface data near the query point, which helps avoid shortest path evaluation on a large surface. Extensive experiments are conducted on large real-world datasets to demonstrate the efficiency of our algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial databases and GIS

Keywords
Reverse nearest neighbor, land surface, terrain

1. INTRODUCTION
Recent technological advances in remote sensing have made available high resolution terrain data of the entire Earth surface. As a result, many online Earth visualization platforms emerge, such as “Google Earth™” and “Bing Maps for Enterprise”. Other examples involving geo-realistic rendering of surfaces include computer games such as “Counter-Strike” and “Call of Duty”. However, these applications focus mainly on the rendering of land surfaces rather than the processing of spatial queries on them.

Due to the ubiquity of high resolution terrain data, it is becoming more and more important to develop geographic information systems (GISs) that support efficient query processing on land surfaces. Such systems would enable many novel and useful applications in the terrain context.

The shortest path problem has been studied on land surfaces by many works such as [5, 6, 7, 8], and the best-known exact algorithm is Chen and Han’s algorithm, which takes $O(n^2)$ time on a surface model of size n. Recently, several works [1, 2, 3, 4] begin to study k-nearest neighbor (k-NN) queries on land surfaces, which is termed surface k-NN (SkNN) queries.

We call a reverse nearest neighbor (RNN) query on land surfaces as a surface RNN (SRNN) query, which, to our knowledge, has not been studied before. There are two popular types of RNN queries in the literature:

- Given a data point set O and a query point q, a monochromatic reverse nearest neighbor (MRNN) query finds all the data points $o \in O$ that have q as their nearest neighbor (NN).
- Given a site point set S, a data point set O and a query point $q \in S$, a bichromatic reverse nearest neighbor (BRNN) query finds all the data points $o \in O$ that are closer to q than any other point in S.

SRNN queries have many real world applications. For example, bichromatic SRNN (BSRNN) queries are important in the domain of disaster response: when a disaster (e.g. earthquake/tsunami) happens, the transportation system may stop functioning, and thus rescue teams have to find ways within the disaster area, instead of using the blocked/damaged roads, to save the lives of the suffered. In this case, a victim should be reached by the rescue team nearest to him/her, and therefore, it is important for the rescue teams to keep track of their RNNs among the victims. Other applications of BSRNN queries include supply distribution during military operations, and wild animal rescue in nature reserves.

Besides BSRNN queries, monochromatic SRNN (MSRNN) queries are also useful in many application domains, such as outdoor activities and military operations. Consider the activity of mountaineering: in order to keep the mountaineers safe, it is important for each member to keep track of his/her RNNs among all the other mountaineers, so that if a member encounters an accident such as a landslide, he/she can get help from his/her nearest neighbor who tracks him/her (e.g. through GPS devices). Similar situations happen in
Figure 1: Triangular Irregular Network (TIN)

military operations, where a troop would reinforce one of its reverse nearest neighbor troop if that troop suffers severe casualty.

In this paper, we study RNN queries on land surfaces, including both MSRNN and BSRNN queries. Unlike traditional RNN queries, the evaluation of SRNN queries is more challenging due to the following two reasons:

- **The size of the surface model data is huge.** Unlike query processing in the Euclidean space, queries on land surfaces also involve the environmental data (i.e. the surface model) besides the object data. A land surface is usually represented by the Triangulated Irregular Network (TIN) model [1, 4], a mesh derived from the Digital Elevation Model (DEM) of sampled ground positions at regularly spaced interval (cf. Figure 1). The surface data are usually collected with high resolution, e.g. terrain data with 10m sampling interval can be easily accessed from [25]. As a result, a typical land surface data contains at least millions of TIN vertices.

- **Finding shortest surface path is computationally expensive.** The best-known algorithm for exact shortest surface path computation is Chen and Han’s algorithm, which takes $O(n^2)$ time on a terrain data with n triangular faces. It is reported in [3] that, for some moderately large areas (a few square kilometers), Chen and Han’s algorithm may take tens of minutes on a modern PC machine to compute a shortest surface path. The poor scalability of Chen and Han’s algorithm poses a challenge for SRNN query processing, since the definition of RNNs on land surfaces is based on the shortest surface path distances.

As a result, efficient SRNN query evaluation requires that (1) the shortest surface path computation should be avoided whenever possible, by efficient pruning methods; and that (2) only a small fraction of the surface data near the query point should be accessed, so that shortest surface path computations are done on a small surface.

To achieve these two goals, we adopt the Voronoi cell [24] approximation structures (i.e. tight/loose cells) to accelerate SRNN query processing. The concepts of tight/loose cells are first proposed in [1] for processing kNN queries. The algorithms of [1] achieve significant pruning power when answering kNN queries, by using several properties of the relationship between a cell and a query points, which we call the cell-point properties.

However, the cell-point properties alone are not sufficient for answering SRNN queries. We discover several (non-trivial) properties of the relationship between two cells, termed the cell-cell properties, which is essential in SRNN query processing. Furthermore, our MSRNN algorithm requires the loose cell of the query point, but [1] only gives an offline algorithm that computes the loose cells of all data points together. Therefore, we also study how to efficiently compute the loose cell of the query point online.

While [1] designs a cell index dedicated to kNN query processing, we find that its algorithm may not return the exact kNNs, due to a flawed cell-cell property it assumes. Therefore, we do not follow that indexing methods, but rather use standard index structures such as R-tree in our algorithms. Extensive experiments on large real-world datasets have demonstrated the efficiency of our algorithms for MSRNN and BSRNN queries.

The rest of the paper is organized as follows. We formally define MSRNN and BSRNN queries in Section 2. In Section 3, we review the concept of tight/loose cells, as well as the cell-point properties. Our cell indexing method is explained in Section 4, where we also present the algorithm of surface NN query processing using the index. In Section 5, we prove two new cell-cell properties and present our algorithm for NN queries among the data objects (rather than the query point), which is a fundamental operation in our MSRNN algorithm. Our online algorithm for constructing tight/loose cells is introduced in Section 6, and our algorithms for MSRNN and BSRNN queries are described in Section 7. Extensive experiments are conducted in Section 8 on large real-world datasets to verify the efficiency of our algorithms. Finally, we review the related work in Section 9, and conclude the paper in Section 10.

2. MSRNN & BSRNN QUERIES

A land surface can be regarded as a continuous function that assigns every point (x, y) on a horizontal plane to a unique z-coordinate value. The TIN model is the most popular model to represent a land surface, which is constructed from the sampled ground positions at regularly spaced intervals, by Delaunay triangulation [24], to form a set of non-overlapping triangles whose vertices are these sampled points. We call the graph defined by the sampled vertices and the edges of the triangles as the model network. Figure 1 shows a piece of land surface represented by the TIN model, where the red lines correspond to the edges of the model network.

Before presenting the formal definition of SRNN queries, let us first define some distance metrics between two points on the TIN model, as well as the corresponding notations.

Definition 1. Let p_1 and p_2 be two points on a land surface.

- **The surface distance** between p_1 and p_2, denoted $d_S(p_1, p_2)$, is the length of the shortest path connecting p_1 and p_2 along the surface.
- **The Euclidean distance** between p_1 and p_2, denoted $d_E(p_1, p_2)$, is the length of the straight line connecting p_1 and p_2.
- **The network distance** between vertices p_1 and p_2, denoted $d_N(p_1, p_2)$, is the length of the shortest path connecting p_1 and p_2 along the model network.

It is obvious that for any two given vertices p_1 and p_2 on a land surface,

$$d_E(p_1, p_2) \leq d_S(p_1, p_2) \leq d_N(p_1, p_2),$$

where the second inequality is because the shortest network path is also a path along the surface. Therefore, the Euclidean distance and the network distance are the lower bound and the upper bound of the surface distance, respectively.

Now, we are ready to formally define SRNN queries:

Definition 2. (MSRNN). Given a data point set O and a query point q on a land surface, a monochromatic surface reverse nearest neighbor (MSRNN) query finds all the data points $o \in O$ such that $\forall o' \in O - \{o\}, d_S(o, q) \leq d_S(o, o')$.
DEFINITION 3 (BSRNN). Given a site point set S, a data point set O and a query point \(q \) on a land surface, a bicromatic surface reverse nearest neighbor (BSRNN) query finds all the data points \(o \in O \) such that \(\forall s \in S - \{ q \}, d_S(o, q) \leq d_S(o, s) \).

3. TIGHT CELL & LOOSE CELL

Voronoi diagram [24] is a powerful tool for processing NN queries. Given a set \(O \) of data objects, a Voronoi diagram divides the space into disjoint cells, where each cell belongs to one object. If a query point \(q \) falls into the Voronoi cell of an object \(o \in O \), then \(o \) is guaranteed to be the NN of \(q \) among all objects in \(O \).

Many algorithms have been proposed for computing Voronoi diagrams in 2D Euclidean space, among which the most commonly used one is Fortune’s plain-sweep algorithm [24], whose time complexity is \(O(n \log n) \) with \(n = |O| \).

However, as pointed out by [1], it is very expensive to construct the exact Voronoi diagram on a land surface. Therefore, [1] proposes two approximation structures of Voronoi cells that can be computed without the necessity of shortest surface path evaluation:

DEFINITION 4 (TIGHT CELL). Given a data point set \(O \) on a land surface \(S \), the tight cell of a data object \(o \in O \), denoted as \(TC(o) \), is a polygon area around \(o \), defined by \(TC(o) = \{ q \in S \mid d_N(o, q) \leq d_N(o_\hat{k}, q), \forall o_\hat{k} \in O - \{ o \} \} \).

DEFINITION 5 (LOOSE CELL). Given a data point set \(O \) on a land surface \(S \), the loose cell of a data object \(o \in O \), denoted as \(LC(o) \), is a polygon area around \(o \), defined by \(LC(o) = \{ q \in S \mid d_N(o, q) \leq d_N(o_k, q), \forall o_k \in O - \{ o \} \} \).

We can rewrite the definitions of tight and loose cells in the following equivalent forms:

\[
TC(o) = \{ q \in S \mid d_N(o, q) \leq d_E(o_k, q), \quad o_k = \arg \min_{o_j \in O - \{ o \}} d_E(o_j, q) \}
\]

\[
LC(o) = \{ q \in S \mid d_N(o, q) \leq d_N(o_k, q), \quad o_k = \arg \min_{o_j \in O - \{ o \}} d_N(o_j, q) \}
\]

Figure 2 shows the tight and loose cells of 6 objects (\(o_1 \) to \(o_6 \)) on a surface, where the blue cells are the tight cells of the objects in them, and the green (purple) cell is the loose cell of \(o_6 \).

Next, we review the cell-point properties proposed in [1], which are necessary in both the S\&NN and our SRNN query processing.

Summary of cell-point properties. Let us use \(NNS(q \mid O) \) to denote the surface nearest neighbor of \(q \) among the data objects in \(O \). Note that if \(q \in O \), then \(q = NNS(q \mid O) \). Theorem 1 summarizes the cell-point properties that correspond to Properties 1 to 4 in [1], the proof of which can be found therein.

THEOREM 1. Given a set of objects \(O = \{ o_1, o_2, \ldots, o_n \} \) on a land surface, the following statements hold:

1. If a query point \(q \not\in O \) is within \(TC(o_i) \), then \(o_i = NNS(q \mid O) \).
2. If a query point \(q \not\in O \) is outside \(LC(o_i) \), then \(o_i \) is guaranteed not to be \(NNS(q \mid O) \).
3. All the edges of the tight cells are also the edges of the loose cells.
4. If \(o_i = NNS(q \mid O) \), then the shortest surface path from \(q \) to \(o_i \) is within \(LC(o_i) \).

4. CELL INDEXING

In this section, we first point out a problem with the existing cell index for S\&NN query processing [1], which explains why we do not follow that framework for indexing. Instead, we propose to index the loose cells of all data objects by an R-tree, which is used to answer surface NN and SRNN queries. Finally, we present an algorithm of surface NN query processing using the index.

Problem with the existing S\&NN algorithm. Based on Statement 3 in Theorem 1, [1] defines the neighbors of an object \(o \in O \) as \(NL(o) = \{ o' \in O - \{ o \} \mid TC(o') \land LC(o') \} \). For example, in Figure 2, \(NL(o_1) = \{ o_2, o_3, o_4, o_6 \} \).

For each data object \(o \in O \), its neighbor list \(NL(o) \) is stored with \(o \) in the cell index of [1], and used to find the \(k \) NNs incrementally on the surface. However, the underlying property of that incremental algorithm (Property 6 in [1]) is based on the following statement:

\[\text{If } o_i \text{ and } o_j \text{ are not neighbors, then } LC(o_i) \land LC(o_j) = \emptyset, \text{ and thus a point } q \text{ on the shortest surface path between } o_i \text{ and } o_j \text{ should exist outside both } LC(o_i) \text{ and } LC(o_j). \]

Nevertheless, this claim is not proved in [1], and in fact, it is not correct. One counterexample is given by Figure 2: although \(o_6 \not\in NL(o_1) \), we have \(LC(o_1) \land LC(o_6) = \emptyset \); moreover, the shortest surface path between \(o_6 \) and \(o_2 \) is totally within \(LC(o_1) \cup LC(o_2) \).

Therefore, the incremental method is not guaranteed to be correct even when \(k \) goes from 1 to 2. This result is not surprising since Voronoi cells are dedicated to 1-NN queries.

In order to study how frequently the claim is breached in general, we randomly generate an object set \(O \) on a fraction of the Eagle Peak land surface dataset [25], and check how many objects \(o \in O \) has its loose cell \(LC(o) \) overlapping with that of a non-neighbor object \(o_j \not\in NL(o) \), by using the following approach.

We build-up an R-tree \(T_{LC} \) from the loose cells \(\{ LC(o) \mid o \in O \} \) using the Sort-Tree-Recursive (STR) algorithm [10]. For each object \(o_i \in O \), we find the set of objects \(C = \{ o_j \in O - \{ o_i \} \mid LC(o_i) \land LC(o_j) = \emptyset \} \) by an intersection query on \(T_{LC} \) with query window \(LC(o_i) \). Then, for each \(o_j \in C \), we check whether \(LC(o_i) \land TC(o_j) = \emptyset \). If, for each \(o_j \in C \), we know that \(LC(o_i) \land TC(o_j) \) have common edges and thus \(LC(o_i) \land TC(o_j) \not= \emptyset \). Otherwise, we find a breach of the claim.

The experimental results are surprising: we find that 70% to 80% of the objects in \(O \) breach the claim (which is very high), and the larger the object set size \(|O| \), the smaller the breach frequency.

Cell index. While the tight/loose cells of the data objects provide great pruning power in surface NN and SRNN query processing, cell construction is time-consuming. As a result, they are usually pre-computed offline, and organized by a spatial index.

We have shown that the neighbor information maintained by the cell index of [1] is no longer useful for correctly answering S\&NN queries. Fortunately, only 1-NN queries are necessary in SRNN query processing, and therefore, we do not adopt the index structure of [1], but rather use the R-tree \(T_{LC} \) over all the object loose cells as the cell index, which has already been used in breach checking.

The R-tree \(T_{LC} \) is sufficient for answering surface NN and SRNN queries. We now present our algorithm for surface NN queries, namely Algorithm 1, which makes use of \(T_{LC} \).

Algorithm for finding NNs \(q \mid O \). According to Statements 2 and 4 in Theorem 1, we can use Algorithm 1 to find \(NNS(q \mid O) \) for a query point \(q \not\in O \). Specifically, we first issue a point intersection query on the R-tree \(T_{LC} \) to find the objects whose loose cells contain \(q \) (Line 1). If there is only one such object \(o \) (Line 2), this implies that \(\forall o' \in O - \{ o \}, LC(o') \) does not contain \(q \), and according to Statement 2 in Theorem 1, \(o \) has chance to be \(NNS(q \mid O) \), which is returned in Line 4. In fact, we have
q ∈ TC(o) in this case. Otherwise, we check all the candidates o ∈ O and return the one with the smallest shortest surface path length (Lines 5 to 11). Note that we compute d rather than on the whole surface, and therefore the shortest surface path. However, according to Statement 4 in Theorem 1, we are able to find the shortest surface path to q ∈ O.

5. OBJECT NN QUERIES

In this section, we study object NN queries: Given an object o ∈ O, find its nearest neighbor in O on the surface, i.e., NN_S(o | O − {o}). As we shall see, an object NN query is a fundamental operation in our MSRNN algorithm in Section 7.

Cell-cell properties. Before describing our algorithm for processing object NN queries, we first present two underlying cell-cell properties which guarantee the correctness of our algorithm.

Theorem 2 prunes all the objects whose loose cells do not intersect with LC(o), from being NN_S(o | O − {o}).

Theorem 2. Any object o′ ∈ O that satisfies LC(o) ∩ LC(o′) = ∅ cannot be NN_S(o | O − {o}).
Algorithm 2 $OO\text{-NN}(o, O, T_{LC})$

Input: query point $o \in O$; object set O; R-tree T_{LC} bulk-loaded from $\{LC(o) \mid o \in O\}$

Output: $d_S(o, NN_S(o \mid O - \{o\}))$

1: Find the set $C = \{o' \in O - \{o\} \mid LC(o') \cap LC(o) \neq \emptyset\}$ by an intersection query on T_{LC} with query window $LC(o)$
2: $\min \leftarrow \infty$
3: for each $o' \in C$ do
4: Invoke Chen and Han’s algorithm to compute $d_S(o, o')$ on $LC(o') \cup LC(o)$
5: if $d_S(o, o') < \min$ then
6: $\min \leftarrow d_S(o, o')$
7: return \min

be within the minimum bounding box (MBR) of a leaf node entry corresponding to $LC(o)$, a refinement step is required to check whether q is within the polygon $LC(o)$. Note that all the intersection judgements can be done simply on the xy-plane, without considering the z-coordinate values. We regard q as being within a polygon P even if q is on the boundary of P.

![Figure 5: Illustration of the Ray Casting Algorithm](image)

To determine whether a point q is within a polygon P, we use the ray casting algorithm. The method counts the number of times the horizontal ray extending to the right of q crosses a polygon boundary edge. If this number is even, the point is outside; otherwise, the point is inside. Figure 5 illustrates this idea on a simple polygon P.

Algorithm 2 requires an intersection query on R-tree T_{LC} with a polygon window win, and if the MBR of win is found to intersect the MBR of a leaf node entry corresponding to $LC(o)$, a refinement step is needed to check whether polygon $LC(o)$ intersects with win.

The general problem of determining whether two polygons P_1 and P_2 intersect cannot be answered by simply checking whether there exists a vertex of P_1 that is within P_2 (see Figure 6(a)), and requires more advanced techniques such as the Bentley-Ottmann algorithm [24].

However, both win and $LC(o)$ in our problem are loose cells, whose boundary must have a vertex on an edge of the model network whenever it crosses the edge (see Section 6). Therefore, we have the following theorem:

Theorem 4. Two loose cells LC_1 and LC_2 intersect if and only if, there exists a vertex of LC_1 that is within LC_2.

Proof. Suppose that part of the edge de of LC_1 is inside LC_2 but both d and e are outside of LC_2, then de crosses at least two
edges of LC_2, such as edges ab and bc in Figures 6(b) and (c). Let us call a horizontal or vertical line of model network edges as a model line. Note that there are two possible cases: (1) If b is not collinear with a and c on a model line, then there exist at least 3 model lines between a and c (see Figure 6(b)) and de must cross the model line in between. (2) If b is collinear with a (or c) on a model line as shown in Figure 6(c), then de must cross the model line of ab (or bc). Thus, in either case, there is another vertex on de, contradicting the fact that de is an edge of LC_1.

Note that we can use the ray casting algorithm described before to determine whether a vertex of LC_1 is within LC_2.

6. CELL CONSTRUCTION

In this section, we present our approach for cell construction, which is important due to the following reasons. (1) In order to accelerate SRNN query processing, we need to pre-compute $TC(o)$ and $LC(o)$ for all $o \in O$. Recall that we also need to bulk-load an R-tree T_{OL} from the loose cells $LC(o)$. (2) Our MSRNN algorithm requires to obtain the loose cells of the query point online.

The work of [1] proposes to compute the tight/loose cells by contracting the Voronoi cells of the object set O in 3D Euclidean space. However, it is not easy to compute the 3D Voronoi cells and then to map them onto the surface. Besides, this approach constructs the cells of all objects in O at once, and cannot support efficient cell evaluation for an individual point q, which is a fundamental operation in our MSRNN algorithm.

Therefore, we propose to construct the cells of a point online, by a breadth-first traversal of the faces starting from that point. We first describe the data structures relevant cell construction.

Vertex inverted index. We build an inverted index I_{vaces} where each entry corresponds to a vertex v of the TIN model. Each entry of I_{vaces} has format $(v, L(v))$, with $L(v)$ being the list of all the faces whose vertices include v. For example, in Figure 7, the list $L(v)$ contains six faces marked by 1 to 6.

One usage of I_{vaces} is to get the seeding faces for our breadth-first cell construction algorithm, and the other usage is to obtain the gluing relationships of faces, which are required as part of the input to Chen and Han’s algorithm. Referring to Figure 7 again, suppose that we want to obtain the face next to Face 6 by the edge ab. This can be done by first computing $L(a) \cap L(b) = \{5, 6\}$ and then picking the face that is not itself (i.e. Face 5). For a face on the boundary of the land surface, its neighboring face along a boundary edge does not exist, and we denote it by NULL.

The above approach requires two I_{vaces} look-ups (i.e. two I/O operations) to get one neighboring face of a given face. An alternative method is to pre-compute the three neighboring faces of each face in the TIN model, so that only one I/O operation is required to obtain all the three neighboring faces for a given face. We do not adopt this alternative to avoid the additional space overhead.

Tight cell vertex computation. Let us consider how to find the vertices of $TC(o)$. Given a vertex v of the model network, let o_k be the NN of v among $O - \{o_i\}$ in the Euclidean space, i.e. $o_k = \arg \min_{o_j \in O - \{o_i\}} d_{E}(o_j, v)$. We bulk-load an R-tree T_{O} from the object points in O beforehand, so that o_k can be found by a best-first NN search [12] using query point v, where object o_k is filtered out during the R-tree traversal.

To decide whether v is within $TC(o)$, according to Equation (2), we need to compute and compare $d_{E}(o_i, v)$ and $d_{E}(o_k, v)$. If $d_{E}(o_i, v) \leq d_{E}(o_k, v)$, we say that vertex v is on o_i’s side, denoted as $v \leftarrow o_i$; otherwise, we say that $v \not\leftarrow o_i$.

For an edge uv of the model network, if $u \not\leftarrow o_i$ and $v \not\leftarrow o_i$, then $d_{E}(o_i, u) \leq d_{E}(o_i, v)$ and $d_{E}(o_i, v) > d_{E}(o_k, v)$, and therefore there must exist at least one split point s on uv such that $d_{E}(o_i, s) = d_{E}(o_i, s)$. The split point s is a vertex of $TC(o_i)$.

There can be more than one split point on an edge uv, which can be found by solving a quartic equation. Consider a point p on edge (u, v) with $|up| = x$. From Figure 8(a) we can see that $d_{E}(o_i, p) = \min\{d_{E}(o_i, u) + x, d_{E}(o_i, v) + (|uv| - x)\}$ is a piecewise linear function of x with at most 2 pieces. In Figure 8(b), by Cosine law, we can obtain $d_{E}(o_i, u) = x^2 - 2 \cdot d_{E}(o_i, u) \cdot x \cdot \cos \angle uv$. Thus, we can solve the equation $d_{E}(o_i, s) = d_{E}(o_k, s)^2$ to compute split points s.

The work of [1] mistakenly assumes that at most one split point s exists on an edge uv. To avoid the complication of solving quartic equations, we follow their assumptions by finding a split point inside the exact $TC(o_i)$. Although cells computed in this way are not the exact ones, they do not influence the correctness of SRNN evaluation, but just slightly reduce the pruning power of the cells, due to the following intuitive principle:

Making the tight cells smaller and the loose cells larger than the exact ones does not influence the correctness of the cell properties. We compute the split point s on an edge as follows. Consider face $\triangle def$ in Figure 9, where $e \not\leftarrow o_i$ and $f \not\leftarrow o_i$. We compute the split point s on ef as follows: Let us denote $x = |ef|$, we compute s by solving the equation

$$d_{E}(o_k, f) + x = (|ef| - x) + d_{E}(o_i, e) \quad (4)$$

The solution is $x = (|ef| + d_{E}(o_k, e) - d_{E}(o_i, f))/2$, and the coordinate of s is computed as $\vec{O}s = \vec{O}f + x \cdot \vec{O}e$. We now prove that all the split points s we compute is inside $TC(o_i)$; the R.H.S. of Equation (4) equals $d_{E}(o_k, s)$, and the L.H.S. is at least $d_{E}(o_k, s)$, which implies that $d_{E}(o_i, s) \leq d_{E}(o_k, s)$, or s is inside $TC(o_i)$. Finally, we replace all the faces in the list $L(v)$ by the split vertices. With the split vertices, we obtain the tight cells.

![Figure 6: Polygon Intersection](image)

![Figure 8: Exact Cell Vertex Computation](image)

![Figure 7: Vertex Inverted Index for Faces](image)
The work of [1] differentiates 4 possible cases for a face: (1) all three vertices are on \(o_i \)’s side (e.g. Face 1 in Figure 9), in which case the face is totally contained in \(TC(o_i) \); (2) all three vertices are not on \(o_i \)’s side (e.g. Face 4 in Figure 9), in which case the face is totally outside of \(TC(o_i) \); (3) only one vertex is on \(o_i \)’s side (e.g. Face 3 in Figure 9), in which case two split points can be computed as illustrated by face \(\Delta abc \) in Figure 9; (4) two vertices are on \(o_i \)’s side (e.g. Face 2 in Figure 9), in which case two split points can be computed as illustrated by face \(\Delta def \) in Figure 9. In the last two cases, a cell edge of \(TC(o_i) \) is defined by the two split points. We also adopt this approach in our implementation.

Loose cell vertex computation. The vertices computation for \(LC(o_i) \) is similar but more tricky. Given a vertex \(v \) of the model network, let \(o_k = \arg\min_{o_j \in O - \{o_i\}} d_N(o_j, v) \). According to Equation (3), to decide whether \(v \) is within \(LC(o_i) \), we need to compute and compare \(d_S(o_k, v) \) and \(d_N(o_k, v) \).

Due to the large size of the TIN model network (typically with millions of vertices) and the object set \(O \), it is not practical to find \(o_k \) by evaluating \(d_N(o_j, v) \) for all \(o_j \in O - \{o_i\} \). Besides, since the computation of \(LC(o_i) \) works in a breath-first manner, the network distance computation for different vertices \(v \) can be shared rather than done individually, so as to utilize the locality property.

Our approach of network distance computation when evaluating \(LC(o_i) \) is as follows. We maintain a pool of partial results obtained from the Dijkstra algorithm for different source vertices \(o_k \in O - \{o_i\} \) during the computation of \(LC(o_i) \). Whenever a network distance computation \(d_N(o_k, v) \) is required, we check whether the partial result of \(o_k \) exists in the pool: (1) if the partial result exists, we check whether \(d_S(o_k, v) \) is already available. If it is available, it is returned directly; otherwise, we continue to run the Dijkstra algorithm until \(d_N(o_k, v) \) is computed. (2) if the partial result does not exist, we create and initialize a new partial result for \(o_k \), run Dijkstra until \(d_N(o_k, v) \) is computed, and add the partial result to the pool.

Our approach is efficient since only a small number of partial results are kept in the pool. To see this, consider the example in Figure 10, where vertex \(c \) of face \(\Delta abc \) is being evaluated. Note that \(o_{k5} \) is so far from \(o_1 \) that \(d_E(o_{k5}, c) > d_N(o_{k5}, c) \), thus \(d_N(o_{k5}, c) \) is even larger and \(o_{k5} \) can be safely pruned. In general, if \(d_E(o_k, v) \) is found to be larger than \(\min_{o_j} \{d_S(o_j, v)\} \) (named upper bound) for all checked objects \(o_j \), then \(o_k \) can be pruned.

Figure 9: Relaxed Cell Vertex Computation

Figure 10: Pruning Candidates of \(o_k \)

To get a tight upper bound in the very beginning, we find the nearest neighbor of \(v \) among objects in \(O - \{o_i\} \) in the Euclidean space, say \(o_{i..} \), using the object R-tree index \(T_O \) mention before, and initialize the upper bound as \(d_S(o_{i..}, v) \).

The split point computation is similar to that of \(TC(o_i) \).

Breath-first cell edge collection. To collect all the edges of \(TC(o_i) \) and \(LC(o_i) \), we check the faces in a breath-first manner, starting from \(o_i \). Specifically, we first initialize a queue \(Q \) with the faces whose vertices contain \(o_i \), which can be obtained by looking up \(L(o_i) \) from \(I_{faces} \). Then, whenever \(Q \) is not empty, we fetch the next face in \(Q \), check the three face vertices, and evaluate split points for \(TC(o_i) \) and \(LC(o_i) \) on the face. If at least one vertex is on \(o_i \)’s side in terms of \(LC(o_i) \), we add the non-visited neighboring faces (if exists) to \(Q \); otherwise, we know that the face is totally outside of \(LC(o_i) \) and we do not further expand faces.

Recall that during this process, we maintain a pool of partial Dijkstra results for different source vertices \(o_k \). Since \(LC(o_i) \) covers only a very small fraction of the whole surface, we can expect that objects far away from \(o_i \) will never require a network distance computation to a vertex on a traversed face. Thus, the pool is kept small (usually less than 10 source objects), and even for those source objects in the pool, the Dijkstra algorithm is run on just a small fraction of the whole surface, as illustrated by the circles in Figure 10.

Boundary cells. For most of the cells, the edges collected form a closed curve (see Figure 11(a)), and thus the polygon cell can be easily constructed. However, there are cases where the edges form one open curve (see Figures 11(b) and (c)), and additional edges or vertices from the boundary of the surface are required to form the polygon cell. To decide which side of the curve is inside, we check whether object \(o \) is in the resulted polygon. In our experiments, we also find other rare cases such as the one shown in Figure 11(d).

Therefore, for all the other cases, we set \(TC(o) \) to be the point \(o \) and \(LC(o) \) to be the MBR of the collected split points.

7. SRNN Query Processing

7.1 MSRNN Query Processing

Given an object set \(O \) and a query point \(q \) on a land surface, a MSRNN query returns the set of objects \(\{o \in O | \forall NN(o) \cup \{q\} - \{o\} = q\} \). Equivalently, an object \(o \) is the MSRNN of \(q \), if and only if

\[
d_S(o, NN(o) \cup \{q\}) \geq d_S(o, q).
\]

(5)

To obtain the MSRNN candidates, we compute \(LC(q) \) among the set \(O \cup \{q\} \) online using our breadth-first cell construction algorithm described in Section 6, with an important additional operation: whenever we obtain a split point \(s \) for the loose cell \(LC(q) \) on edge \(uv \), according to Equation (3) we have

\[
d_E(q, s) = d_N(q, s), \quad s = \arg\min_{o_i \in O} d_N(o_i, s),
\]

(6)

and we collect \(o \) into the MSRNN candidate set \(C \). The following theorem guarantees that the MSRNNs of \(q \) must be in \(C \).
Algorithm 3 Finding the MSRNNs of Query Point q

1: $MRNN \leftarrow \emptyset$
2: Compute LC of q among $O \cup \{q\}$ and collect candidates to set C
3: for each $o \in C$ do
4: \quad if $LC(o) \cap LC(q) \neq \emptyset$ then
5: \quad \quad $d_S(o, NN_S(o \mid O - \{o\})) = OO-NN(o, O, T_{LC})$
6: \quad \quad Invoke Chen and Han’s algorithm to compute $d_S(o, q)$ on $LC(o) \cup LC(q)$
7: \quad \quad if $d_S(o, NN_S(o \mid O - \{o\})) \geq d_S(o, q)$ then
8: \quad \quad \quad $MRNN \leftarrow MRNN \cup \{o\}$
9: \quad return $MRNN$

Theorem 5. Any object $o \notin C$ in O cannot be q's MSRNN.

Proof. Note that the polygon $LC(q)$ computed in the context of $O \cup \{q\}$ is the same as the polygon $LC(q)$ computed in the context of $O \cup \{q\}$. Therefore, for any point v outside $LC(q)$, it holds that $\exists o \in C, d_S(q, v) > d_N(o, v)$.

For an object $o \notin C$ in O, it must be outside of $LC(q)$ according to the definition of loose cells, and therefore $\exists o \in C, d_S(q, o) > d_N(o, o)$. Thus $d_S(q, o) \geq d_S(q, o) > d_N(o, o) \geq d_S(o, NN_S(o \mid O - \{o\}))$, and according to Equation (5), o cannot be an MSRNN.

Algorithm 3 shows our algorithm for MSRNN queries. In Line 2, we first compute the MSRNN candidate set C by evaluating $LC(q)$ among $O \cup \{q\}$ using the breadth-first approach. We filter out those candidates o that satisfy $LC(o) \cap LC(q) = \emptyset$ in Line 4. This is because, according to Theorem 2, any point $p \in O \cup \{q\}$ that satisfies $LC(o) \cap LC(q) = \emptyset$ cannot be $NN_S(o \mid O \cup \{q\} - \{o\})$, where $LC(o)$ is computed in the context of $O \cup \{q\}$, denoted as $LC(o \mid O \cup \{q\})$. Note that the $LC(o)$ in Algorithm 3 is the pre-computed one in the context of O, i.e. $LC(o \mid O)$. According to Definition 5, it can be easily proved that $LC(o \mid O \cup \{q\}) \subseteq LC(o \mid O)$. Therefore, if Line 4 finds that $LC(o \mid O) \cap LC(q) = \emptyset$, then $LC(o \mid O \cup \{q\}) \cap LC(q) = \emptyset$, and o cannot be $NN_S(o \mid O \cup \{q\} - \{o\})$.

For each non-pruned candidate o, we compute $d_S(o, NN_S(o \mid O - \{o\}))$ in Line 5 using the object NN query described in Section 5. Compute $d_S(o, q)$ in Line 6, and then determine whether o is an MSRNN of q by checking Equation (5) in Line 7. Note that in Line 6, we only need to evaluate the shortest surface path on $LC(o \mid O) \cup LC(q)$ whenever it is $LC(o \mid O \cup \{q\}) \cup LC(q)$ according to Theorem 3.

If $d_S(o, NN_S(o \mid O - \{o\})) = \emptyset$, pre-compute for all $o \in O$. Algorithm 3 only requires one shortest surface path computation. Otherwise, it needs to compute several shortest surface paths.

7.2 BSRNN Query Processing

To process BSRNN queries, we pre-compute the cells for all sites $s \in S$ and build a T-tree T_{BSRNN} from $\{LC(s) \mid s \in S\}$. During cell construction, a T-tree is bulk-loaded for nearest neighbor queries when computing the cells. Besides, we also build a T-tree T_{BSRNN} for range queries used in the BSRNN query processing.

Algorithm 4 shows our algorithm for BSRNN queries. According to Theorem 2 in Algorithm 1, only those objects within $LC(q)$ have chance to be BSRNNs, and they are obtained as the candidate set C in Line 2. For each candidate o, if it is within $TC(q)$, it is guaranteed to be a BSRNN of q according to Theorem 1 in Algorithm 1. Otherwise, we find the nearest site to o in Line 7 and check whether it is q in Line 8 to determine whether o is a BSRNN.

The algorithm can also support BSRNN queries on a moving object set O, by maintaining T_{BSRNN} as a TPR*-tree [23].

Algorithm 4 Finding the BSRNNs of Query Site q

1: $BRNN \leftarrow \emptyset$
2: Perform a range query on T_{BSRNN} with query window $LC(q)$ to find the object set $C = \{o \mid o \in O \land o \text{ is within } LC(q)\}$
3: for each $o \in C$ do
4: \quad if o is within $TC(q)$ then
5: \quad \quad $BRNN \leftarrow BRNN \cup \{o\}$
6: \quad else
7: \quad \quad $nn \leftarrow QO-NN(o, S, T_{BSRNN})$
8: \quad \quad if $nn = q$ then
9: \quad \quad \quad $BRNN \leftarrow BRNN \cup \{o\}$
10: \quad return $BRNN$

8. EXPERIMENTS

In this section, we evaluate the performance of our algorithms for MSRNN and BSRNN queries on two large real-world datasets downloaded from [25]: Eagle Peak (Eagle) and Bearhead (BH), which have also been used in previous studies such as [1] and [2]. The statistical information of the datasets is given in Table 1.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Vertices</th>
<th>Number of Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Peak</td>
<td>1,381,481</td>
<td>2,762,693</td>
</tr>
<tr>
<td>Bearhead</td>
<td>1,318,844</td>
<td>2,637,538</td>
</tr>
</tbody>
</table>

We use the most recent implementation of Chen and Han’s algorithm [9] for surface shortest path computation. All our programs are written in JAVA, and the executable program of [9] is called on the localized surface regions for surface shortest path computation.

The pre-computation of the index structures, such as the vertex inverted index I_{faces} and the loose cell R-tree T_{LC}, are carried out on a public Linux server with eight 3GHz Intel Xeon X5450 CPU and 32GB memory. All the experiments on queries are done on a computer with 3GHz Intel Core2 Duo E8400 CPU and 2GB memory, where the whole model network and all the index structures are disk-based.

Let $G = (V, E)$ be the model network, we define object (site) density as $|O|/|V| (|S|/|V|)$. We test our algorithms with different object densities. For each density configuration, we randomly generate 100 query points and run our algorithms with each query point. All the reported measures are averaged on the 100 runs.

8.1 Results of Index Construction

The operation of breadth-first cell construction for all objects $o \in O$ dominates the time cost of the index construction phase. Figure 12(a) shows the number of source objects whose partial Dijkstra results is in the pool when computing $TC(o)$ and $LC(o)$ averaged over all the objects in O, with varying object density. We can see from Figure 12(a) that, as object density increases, the pool size also increases. The pool size is usually around 7 to 8, which verifies the effectiveness of our Euclidean distance based pruning of network distance computation.

Figure 12(b) shows the time of constructing cells for all the objects $o \in O$, with varying object density. We can see from the figure that the cell construction time increases almost linearly with the increment of object density. This is because, given a specific surface data, object number is proportional to object density.

8.2 Results of NN Queries

In this set of experiments, we evaluate the performance of our algorithm for surface NN queries (Algorithm 1). Recall that no
shortest surface path computation is necessary if query point q falls within the tight cell of some object. For each object density, we count the number of such queries, denoted N, among the 100 NN queries tested. The ratio $N/100$ is called the Tight Cell Coverage Ratio (TCCR). Figure 12(c) shows the TCCR with varying object density, where around 80% to 90% NN queries do not need to invoke Chen and Han’s algorithm. Figure 12(d) shows the average NN query processing time with varying object density. The query processing time is long (1 to 3 seconds) for sparse object distribution, due to the large areas of loose cells which act as input to Chen and Han’s algorithm.

8.3 Results of MSRNN Queries

In this set of experiments, we evaluate the performance of our algorithm for MSRNN queries (Algorithm 3). Recall that Algorithm 3 performs MSRNN candidate filtering in the beginning in Line 2. Figure 12(e) shows the average number of candidates with varying object density, where we can see that there are usually 6 to 7 candidates and the trend is not sensitive to object density. We also find that the MSRNN count distribution is not sensitive to object density. Figure 12(f) shows the MSRNN count distribution over all the MSRNN queries we tested, where almost half of the query points have exactly one MSRNN, very few of the query points have four MSRNNs, and no query point has over four MSRNNs.

Figure 12(g) shows the average MSRNN query processing time with varying object density. The query processing time is quite long for sparse object distribution, due to the large areas of loose cells which act as input to Chen and Han’s algorithm.

To further clarify the trend of query time, we plot the curves in log-scale in Figure 12(h), where we can see that the performance of our algorithm is good for reasonably large object densities ($\geq 3\%$).

8.4 Results of BSRNN Queries

In this set of experiments, we evaluate the performance of our algorithm for BSRNN queries (Algorithm 4). For each site density, we generate object sets of different sizes, and for each object set, we perform 100 BSRNN queries.

The objects that fall in $TC(q)$ are guaranteed to be q’s BSRNNs. Let the percentage of BSRNNs among the objects in $LC(q) - TC(q)$ be termed the BSRNN ratio. Figure 12(i) shows the BSRNN ratio when $|O|/|S|$ varies. The results are averaged over experiments with different site densities, since BSRNN ratio is insensitive to site density. We can see that around 45% to 50% of the objects that fall in region $LC(q) - TC(q)$ are q’s BSRNNs.

The average number of BRNNs of a query point is also found to be insensitive to site density. On the other hand, it is sensitive to $|O|/|S|$, as Figure 12(j) shows. This is within the expectation, since each site $s \in S$ has to serve $|O|/|S|$ objects on average.

Figure 12(k) shows the average BSRNN query processing time on the site set S with site density 3%, when $|O|/|S|$ varies. The query processing time increases when $|O|/|S|$ increases. This is because, as $|O|/|S|$ becomes larger, more objects tend to fall in the region $LC(q) - TC(q)$, and therefore more NN queries are required to check whether each candidate object is q’s BSRNN.

Figure 12(l) shows the average BSRNN query processing time for different site densities, when $|O|/|S| = 8$. The query time increases as site density decreases. This is because smaller site densities implies larger areas of loose cells, which not only implies
larger input region to Chen and Han’s algorithm, but also higher chance that an object falls in region $LC(q) - TC(q)$.

9. RELATED WORK

The concept of RNN is first introduced in [13]. Since then, many algorithms have been proposed for finding RNNs in the Euclidean space. Algorithms for MRNN query processing include SAA [14], TPL [15], Finch [20], Influence Zone [21]. Algorithms for BRNN query processing include [18] and [19]. [22] studies RNN queries in road networks.

Studies on finding shortest surface paths date back to the 80s to 90s, when a series of exact and approximation algorithms are proposed. The most efficient exact algorithms include the one proposed in [7] with $O(n^2 \log n)$ time complexity, and Chen and Han’s algorithm [8] with $O(n^2)$ time complexity, where n corresponds to the number of triangles in the TIN model. Chen and Han’s algorithm is later implemented in [9].

Recently, [5] proposes an approximate algorithm with $O(\log n + \sqrt{n})$ time complexity, by treating the surface paths on the non-rough areas as straight lines, and [6] studies the problem of finding shortest paths with slope constraint and develops the surface simplification technique to reduce the model complexity, so as to reduce the time complexity of finding shortest paths.

As for the research on surface k-NN queries, [2] and [3] first propose a filter and refinement strategy to answer kNN queries on multi-resolution terrain models. However, this approach can neither guarantee accuracy nor provide the shortest surface paths to the nearest neighbors. An exact solution to the kNN problem is proposed in [1], where approximations of Voronoi cells are constructed to prune unnecessary shortest surface path computation and to localize the shortest path computation. In this paper, we also make use of these Voronoi Cell approximation structures for the same purposes. Although the concept of Voronoi diagram is only related to 1-NN, [1] claims that its approximation structures can be used in an incremental manner to answer k-NN queries for arbitrary k. Unfortunately, as we have discussed in Section 4, the correctness of the algorithm relies on an unproved statement, which is, however, flawed. [4] studies the problem of continuously monitoring the k nearest neighbors of a fixed query point when the objects on the surface are moving.

10. CONCLUSION

In this paper, we investigate how to process RNN queries on land surfaces. Specifically, we study monochromatic SRNN queries and bichromatic bSRNN queries. Our SRNN algorithms are based on several newly-discovered properties of the Voronoi cell approximation structures, and are able to localize the query evaluation by accessing just a small fraction of the surface data near the query point. The majority of the objects that cannot be the SRNNs of the query point are pruned by our cell properties. Furthermore, we propose a new online cell construction algorithm which is essential to our MSRNN algorithm, and is efficient due to our smart approach for computing network distances. Extensive experiments on large real-world datasets demonstrate the efficiency of our algorithms.

11. ACKNOWLEDGEMENTS

This work is partially supported by RGC GRF under grant number HKUST 618509.

12. REFERENCES

